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12:00 - 12:25    Adarsh Arun – Reaction impurity prediction using a data mining approach 

12:25 - 12:50    A Kondinski – Automated rational design via knowledge engineering 
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14:00 - 14:35    Ruben Sanchez-Garcia - Compound availability and the numbers we care 
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analysis and batch process monitoring 

15:00 - 15:25    Calvin Tsay - SnAKe: Bayesian Optimization with Pathwise Exploration 

15:25 - 15:35    Break 

15:35 - 16:10    François-Xavier Felpin - Autonomous Flow reactors Associating In-

line/Online Analyses and Feedback Algorithms 

16:10 - 16:35    Ioana Gherman - Accelerating whole cell modelling with machine learning 

16:35 - 17:00    Haiting Wang – A Hybrid Modelling Framework for Bioprocess 

17:00 - 17:25    Pierre-Aurelien Gillot  - Systemic comparison of neural network 

architectures for protein expression prediction in bacteria 

17:25 - 19:15    Networking and dinner 

19:15                Day 1 end 
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discovery- A methodological framework 

13:00 – 14:00    Lunch 

14:00 - 15:00    Keynote 2 – Kerry Gilmore 

15:00 - 15:25    Felix Strieth-Kalthoff - Closing the Loop in Materials Discovery: The Quest 

for Organic Lasers 

15:25 – 15:45   Break 

15:45 - 16:10    Venkat Kapil - The first-principles diagram of monolayer nanoconfined water 

16:10 – 16:35    Abhishek Sharma - AI-EDISON: Autonomous Intelligent Exploration, 

DIScovery and Optimisation of Nanomaterials 

16:35 - 17:00    Closing Remarks 

17:00                End of day 2 

All reported times in BST. 
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Kerry Gilmore is an assistant professor at the University of Connecticut. His group develops 
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Professor François-Xavier Felpin leads the Sustainable Chemistry and New Technologies 
(SCNT) research group at Université de Nantes. The group works at the interfaces of catalysis, 
(macro)molecular chemistry and chemical engineering, in areas as diverse as homogeneous 
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research focusses on data-driven modelling approaches for molecular simulation and 

materials discovery. 

 

Ruben Sanchez-Garcia 

 

Ruben Sanchez-Garcia is a postdoctoral fellow in the Department of Statistics at the University 
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Abstract (<400 words):  

 

Automated prediction of reaction impurities can be useful in facilitating rapid early-stage 

reaction development, synthesis planning and optimization. Existing reaction predictors are 

catered towards main product prediction, (1,2) and are often black-box, making it difficult to 

troubleshoot erroneous outcomes. This work aims to present an automated impurity prediction 

workflow that is interpretable and transparent, as it is based on data mining large chemical 

reaction databases. A 14-step workflow was implemented in Python and RDKit using Reaxys 

data.(3) Evaluation of potential chemical reactions between functional groups (4) present in 

the same reaction environment in the user-supplied query species can be accurately 

performed by directly mining the Reaxys database for similar or ‘analogue’ reactions involving 

these functional groups. Reaction templates can then be extracted from analogue reactions 

and applied to the relevant species in the original query to return impurities and 

transformations of interest. Three proof-of-concept case studies based on active 

pharmaceutical ingredients (paracetamol, agomelatine and lersivirine) were conducted, with 

the workflow able to suggest the correct impurities within the top two outcomes. At all stages, 

suggested impurities can be traced back to the originating template and analogue reaction in 

the literature, allowing for closer inspection and user validation. Ultimately, this work could be 

useful as a benchmark for more sophisticated algorithms or models since it is interpretable, 

as opposed to purely black-box solutions, and illustrates the potential of chemical data in 

impurity prediction.  
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Abstract:  

 

Rational design (RD) is a form of design thinking that enables reliable molecular engineering 

of complex materials with desired properties. Emulation of RD with the help of artificial 

intelligence is currently highly desirable, as it enables the facile development of autonomous 

systems for chemical discovery. However, as RD is a cognitively complex process its direct 

emulation remains challenging. Inspired by our previous work in the development of didactical 

tools and digitally interoperable knowledge-based systems, we initially hypothesized that 

knowledge engineering (KE) may be best suited for the emulation of RD. In this talk we first 

showcase the different components of a KE system, that is an ontology, instances, and a 

software agent and how they can be tailored to address advanced molecular systems such as 

the hybrid organic-inorganic molecules called metal-organic polyhedra (MOPs). The KE 

approach is then successfully used for RD of new MOP instances in an evidence-based 

manner, which essentially demonstrates its utility for the automation of RD processes.1  
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Abstract: 

 

Viscosity represents a key indicator of formulated product quality but has traditionally been 

difficult to measure in-process in real-time. This is particularly true if the process involves 

complex mixing and reaction phenomena operated at dynamic conditions. To address this 

challenge, a promising solution to monitoring product viscosity is to design soft-sensors which 

correlate viscosity with easily measured process variables. In this study, we developed an 

innovative machine learning based soft-sensor construction framework by integrating different 

types of advanced artificial neural networks. The framework first employs a dimensionality 

reduction technique to generate information-rich statistic latent variables by compressing high-

dimensional industrial data, and then adopts a novel heteroscedastic noise neural network 

(HNN) to simultaneously predict product viscosity and its associated uncertainty based on the 

extracted latent features. Specifically, to guarantee extraction of key process information, this 

study investigated two dimensionality reduction techniques, namely partial least squares 

(PLS) and a deep learning autoencoder, succeeded by a fully comprehensive analysis and 

comparison of the performance of the respective soft-sensors. To evaluate the accuracy and 

robustness, the data-driven soft-sensors were used to predict product viscosity for a number 

of industrial batches operated over different seasons and product variants. It is found that the 

soft-sensors constructed using both dimensionality reduction techniques have both high 

accuracy (prediction error <12%) and high reliability (predicted uncertainty similar to the 

measurement uncertainty within the factory) in most cases, indicating their great potential for 

industrial batch process monitoring and quality control. 
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Abstract (<400 words):  

Industrial bioprocesses have experienced a fast development in many fields such as 

renewable energy generation, wastewater treatment and pharmaceutical manufacturing. 

However, due to the limited knowledge of the biological mechanisms of living cells, most 

bioprocesses are still limited to lab-scale, and experiments are expensive and time-

consuming. Alternatively, mathematical modelling of bioprocesses is an effective method to 

computationally simulate the bioprocess behaviours. Mechanistic models are commonly 

designed based on prior knowledge of the biosystem. However, expressing all potential 

mechanisms mathematically can be heavy work and simulating unclear mechanisms is tough. 

Instead, we can use data-driven models based on machine learning without mechanistic 

knowledge. However, machine learning models do not extrapolate, and this is particularly 

damaging when we wish to predict the behaviour in new areas, to optimise the biosystems, 

and particularly in low data regimes. Hybrid models can be considered an effective modelling 

alternative, and “the best of the two worlds”. A well-built hybrid model can provide fast and 

reliable simulation performance with good extrapolation capabilities [1]. The problem is, 

however, how can we build a robust and reliable hybrid model? 

In this work, we proposed a hybrid model construction methodology as shown in Figure 1. The 

mechanistic backbone is designed based on prior knowledge of biological mechanisms and 

process engineering. At the same time, data-driven methods can be incorporated to represent 

the unknown biomechanisms efficiently. This methodology is based on asymptotically 

complete global optimisation algorithms for the parameter estimation step, and branch and 

bound and genetic algorithms for the model complexity selection, depending on the complexity 

of the models. To avoid overfitting problems, different statistically-based model selection 

methods are used to choose the best model structure to balance the fitting and extrapolation 

performance of the hybrid model.  

 
Figure 1 Illustration of the proposed hybrid model construction methodology. 

Then the proposed methodology can be tested in a case study for the simulation of the 

microalgae cultivation process. The mechanistic structure of the model is designed based on 

the mass balance of state variables. The influence of light attenuation, substrate and nitrate 

consumption on the microalgae growth rate is simulated through data-driven methods 

including polynomial regression and Artificial Neural Networks. The data-driven model 

structure is selected through statistic methods such as Bayesian Information Criterion (BIC), 

mailto:haiting.wang19,%20cleo.kontoravdi98,%20a.del-rio-chanona%7d@imperial.ac.uk


Akaike Information Criterion (AIC) and Hannah Quinn Criterion (HQC). The model is further 

validated to provide robust extrapolation ability. 
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Abstract:  
Protein expression in bacteria is a tightly regulated phenomenon whose activity can span up 

to five orders of magnitude across the genome. Achieving precise control over protein levels 

is important for many bioengineering applications, for example, allowing us to maximize the 

synthesis of a high value product or to control fluxes in a metabolic pathway. Recent studies 

have investigated the determinants of protein expression and have shown translation initiation 

to often be the rate-limiting step. During translation initiation, the ribosome interacts with the 

non-coding start of the messenger RNA within the 5’ untranslated region (UTR). Mutations in 

this region can have a large impact on protein expression, but finding the appropriate 

mutations for a particular application usually involves lengthy experiments. To circumvent 

these experiments, predictive models of translation initiation have been developed, but their 

performance is generally poor. Recent high-throughput experiments linking 5’-UTR mutations 

to protein expression activities now provide researchers with a trove of data to improve on 

existing models and pave the way for statistical learning. Here we show the superior 

performance of neural networks over traditional biophysical models to predict protein 

expression from sequence alone. By systematically comparing different neural networks 

operating on various representations of the 5’-UTR sequence, we show a 30% improvement 

in accuracy over state-of-the-art methods. We demonstrate how the best architecture can also 

be fine-tuned to a different sequence context using only a few additional experimental 

measurements. We anticipate our algorithm, which is publicly available 

(https://gitlab.com/Pierre-Aurelien/rebeca), will accelerate the genetic sequence design 

workflow and help deepen our understanding of how gene expression is regulated.   
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Abstract:  

Whole cell models are mathematical models designed to capture the function of all genes and 

core processes within a cell. Developing whole cell models is seen as a grand challenge of 

the 21st century [1] and although explored for over a decade, only two partially complete 

models have been published to date, for bacteria Mycoplasma genitalium [2] and Escherichia 

coli [3]. The interest in whole cell models stems from their ability to provide an integrated 

picture of diverse processes within a cell, uncover novel cellular phenotypes, and understand 

the behaviour of engineered cells (e.g. containing new metabolic pathways or having genes 

knocked out) for biotechnology purposes (e.g. bioproduction) [4,5,6]. Despite their value, 

whole cell models also bring some challenges, with the most pressing of these being the huge 

computational demand of the simulations. To simulate the life cycle of a single Mycoplasma 

genitalium cell (one of the simplest organisms we know of), using the most comprehensive 

model to date, takes up to 24 hours on a typical desktop computer. This makes it difficult to 

run the tens of thousands of simulations required for understanding the effect of changes to a 

cell and to engineer applications like genome design, where we attempt to augment or alter 

core functionalities of the cell. Here, we aim to address this challenge by building a ‘surrogate’ 

of a whole cell model that uses machine learning algorithms to accelerate the speed of 

simulations. Surrogates also referred to as emulators or metamodels, represent an alternative 

representation of a full mathematical model. They are usually trained/fitted using simulation 

data from the full system model, and once the surrogate's performance closely matches the 

original model, it can be used in its place to accelerate future simulations [7]. We explore the 

applicability and usage of machine learning surrogates in the context of whole cell models and 

demonstrate how they can both speed-up simulations in specific circumstances and be used 

to uncover interesting dynamics of cellular phenotypes, that would be nearly impossible to 

assess with current experimental methods. Surrogate models may hold the key to making 

whole cell modelling practical for studying cellular biology and bioengineering on a typical 

desktop computer and help improve accessibility of this powerful modelling technique. 
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Abstract: 

Accurate, predictive, and interpretable mathematical models are important from a theoretical 

and practical point of view. Theoretically, these models allow engineers to gain fundamental 

understanding of physical phenomena. Practically, these models allow engineers to optimize, 

control and even develop novel processes. Nevertheless, the automated discovery of true 

kinetic rate models remains an open challenge within the chemical engineering community. 

This challenge has many ramifications within the industrial world, ranging from sub-optimal 

control to difficulties within the design and upscaling of chemical processes.  

Different modelling techniques have been proposed and explored in the literature: white-box 

modelling, grey-box modelling, and black-box modelling. The grey-box modelling technique 

exploits the advantages of white-box modelling, namely its predictive ability, and the 

advantages of black-box modelling, namely its ease of construction. However, most hybrid 

models presented in the literature make undetermined assumptions about the chemical 

system investigated (e.g.: assuming kinetic formalisms) and do not include a rigorous model 

selection method. While these assumptions hinder the accuracy and predictability of the model 

proposed, the absence of a rigorous model selection method limits the capabilities of finding 

the underlying ground truth of the system.  

Due these limitations within the model building framework, we have developed a method that 

tackles them. Our method uses minimal – but important and physically-driven – prior 

knowledge to guide a symbolic regression algorithm to propose competing kinetic rate 

equations for a given chemical system. Then, using carefully analyzed model selection criteria 

and model-based design of experiments, we can robustly identify and choose the model that 

accurately describes the system’s kinetics while providing limited, but highly informative data. 

To strengthen our approach, we benchmarked a plethora of model selection criteria on 

different case studies, whilst varying the quantity and information content of the data provided. 

We also assessed the level of noise that each criterion was able to withstand until it started 

selecting wrong models. Our objective was to discover which criterion, if any, was better suited 

for the kinetic rate discovery task, and investigate which criterion was the most robust. Our 

study demonstrated that, from the criteria examined, the Hannan and Quinn criterion is the 

most robust and well-suited for the problem class at hand. In conclusion, our meticulous choice 

of model selection criterion integrated within our proposed methodological framework 



maximizes the probability of the true kinetic rate model being retrieved from the data used, 

proving the essential role of a rigorous model selection method.  
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Abstract: 

Augmenting automated experimentation with artificial intelligence has emerged as the next-

generation paradigm to streamline and accelerate materials discovery workflows. In this “self-

driving laboratory” (SDL) framework, the processes of materials design, compound 

preparation, and property optimization are automated in order to close the traditional “design–

make–test” loop and enable autonomous experimentation. 

 

In this talk, I will outline our recent efforts towards such a SDL for discovering novel gain 

materials for organic solid-state lasers (OSL). Given the omnipresence of lasers and their 

numerous technological applications, OSLs have attracted significant attention owing to 

distinct advantages regarding cost, color tunability or device fabrication. At the same time, the 

discovery of gain materials for OSLs – usually highly conjugated organic molecules – has been 

hampered by a range of decomposition and excited-state deactivation processes. 

Our SDL attempts to streamline this discovery process by “closing the loop” of designing 

suitable candidates for OSL gain materials, synthesizing them, and measuring their lasing 

properties: In a cloud-centered platform for data storage and experiment design, a Bayesian 

optimization algorithm suggests suitable molecular structures using a fragment-based 

approach. The AI-proposed molecules are then “downloaded” and synthesized in the 

laboratory, assembling the molecular building blocks using an iterative cross-coupling 

strategy. Automated reaction analysis, coupled to in-line characterization of optical materials 

properties, allows for experimental execution in a fully integrated end-to-end workflow. 

Feeding the obtained data back to the cloud, the Bayesian optimizer is refined to propose 

next-generation candidate molecules, enabling autonomous iterative optimization. 

 

Throughout the talk, I will discuss the implementation of this SDL, along with its evolution into 

a platform for asynchronous, delocalized optimization campaigns, where experimentation is 

distributed over multiple sites and instruments. Eventually, I will outline how these 

collaborative efforts have enabled the discovery of early-generation leads – on the way to 

better OSL gain materials. 
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Abstract:  

 

The design and development of nanomaterials have been extensively explored due to their 

unique properties and wide range of applications in medical science, sensing, electronic 

devices, catalysis, and energy storage. Their unique properties can be controlled by fine-

tuning the morphological features; however, the synthetic procedures often suffer from lower 

yields and irreproducibility. These problems often emerge due to extreme sensitivity to high-

dimensional experimental conditions such as concentrations, mixing rates, temperature etc. 

To overcome these problems, here we present an AI-enabled closed-loop nanomaterial 

synthesis platform (AI-EDISON) which employs automated synthesis, real-time 

characterization, and theory within the feedback loop driven by machine learning algorithms 

[1].  We designed and built a modular robotic architecture that performs multi-step automated 

seed-mediated synthesis of gold nanoparticles (AuNPs) together with inline characterization 

using UV-Vis spectroscopy.  

 

Based on the hypothesis that exploring diversity in UV-Vis spectra could lead to the exploration 

of nanostructures with unique morphological properties, we performed the exploration of 

multiple synthetic spaces of AuNPs using the MAP-Elites algorithm. In the closed-loop 

approach, the observational space was discretized into finite intervals where sampling points 

with the highest fitness (elites) were used to create a new set of experiments via mutation, 

crossover, and random sampling. We were able to discover distinct AuNPs with various 

morphologies such as spheres, rods, polyhedral, bicones, and stars with a higher yield. After 

exploration, AI-EDISON was used to optimize the synthetic conditions towards a pre-defined 

target generated by using a fast GPU-accelerated scattering simulation engine on the 

nanoparticle shapes generated from the electron micrographs. Due to the non-uniqueness of 

UV-Vis towards a specific structure, optimization was performed utilizing a global search 

algorithm with local sparseness to find multiple synthetic conditions towards the target spectra 

achieving significant improvement in yield and monodispersity.  

 

Additionally, we have demonstrated the platform’s capability to perform parallel and 

reproducible synthesis, by setting pre-defined multistep synthetic targets utilizing a Chemical 

Description Language (χDL)[2]. We believe AI-EDISON’s closed-loop methodology to perform 

experiments offers a viable way toward efficient nanomaterial discovery, optimization, and 

reproducible synthesis. 
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Abstract: 
 
Water in nanoscale cavities is ubiquitous and of central importance to everyday phenomena 

ingeology and biology, and at the heart of current and future technologies in nanoscience. A 

molecular-level picture of the structure and dynamics of nanoconfined water is a prerequisite 

to understanding and controlling the behavior of water under confinement. Here we explore a 

monolayer of water confined within a graphene-like channel using a framework that combines 

developments in high-level electronic structure theory, machine learning, and statistical 

sampling. This approach enables a treatment of nanoconfined water at unprecedented 

accuracy. We find that monolayer water exhibits surprisingly rich and diverse phase behaviour 

that is highly sensitive to temperature and the van der Waals pressure acting within the 

nanochannel. Monolayer water exhibits numerous molecular ice phases with melting 

temperatures that vary by over 400 degrees in a non-monotonic manner with pressure. In 

addition, we predict two unexpected phases: a ”hexatic-like” phase, which is an intermediate 

between a solid and a liquid, and a superionic phase with a high electrical conductivity 

exceeding that of battery materials. Our work suggests that nanoconfinement could be a 

promising route towards superionic behavior at easily accessible conditions.  
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Abstract:  

Applying artifical intelligence to create self driving chemical laboratories may deliver orders 
of magnitude enhancements in research productivity. However, implementation of artificial 
intelligence into realistic use cases often encounters a number of severe hurdles: chemical 
scientists need to obtain advanced skills in automation/coding, commercial platforms are 
costly, and suppliers of automated lab devices often "lock" a users into supplier automation 
workflows. These hurdles limit laboratories across the world from reaching the critical mass 
required for widespread adoption of "smart" laboratories.  

In the pursuit of solving these challenges, and democratising smart laboratories, we have 
developed FLab,1 an open-source Python coding framework for linking automation, IOT 
technologies, and artificial intelligence in chemical laboratories. FLab utilises an intuitive, 
modular, object-oriented architecture to streamline manipulation of shared devices, tasks, AI 
bots and user interfaces.  In this presentation, we describe the inner workings of Flab, and 
its differentiation from existing frameworks like Labview, ROS and Matlab. We then illustrate 
its uses in real laboratory experiments, which include a bespoke automated flow chemistry 
scale-up rig, a high-throughput batch formulation robot, and a system for measuring 
hydrodynamic parameters in a gas/liquid flow reactor. Finally, we discuss critical aspects for 
improvement within FLab and within self-driving labs, pointing to new avenues of further 
research and collaboration in this growing field. 
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Poster Session 
Presenter Poster title 

Cai Y Ma Machine Learning, Imaging and Image Processing for 3D 
Crystal Shape Characterisation 

Dongda Zhang, 
Alexander Rogers 

Comparing different hybrid modelling approaches for bioprocess 
predictive modelling and uncertainty propagation  

Andrea Friso Optimal design of experiment for model structure identification 
coupling MBDoE techniques and RL methodologies 

Kobi Felton  

Dongda Zhang Safe Chance Constrained Reinforcement Learning for Batch 
Process Control 

Tania Mahmood Using Molecular dynamics simulations to unpin interactions 
occurring under high concentration mAb formulations  
 

Charles Gong Evaluating and interpreting uncertainty in QSAR models 

Marcus Wang Using automated machine learning for the prediction of 
developmental and reproductive toxicity 

Srijit Seal Biological Interpretation of Cell Painting and Gene Expression 
Features for Mitochondrial Toxicity Prediction 

Elena Gelzinyte ML force fields for open- and closed-shell organic molecules 

Yuhan Wang Using molecular dynamics simulation to predict the aggregation 
propensity of monoclonal antibodies formulations & accelerate 
development 

Austin Tripp Meta-learning Adaptive Deep Kernel Gaussian Processes for 
Molecular Property Prediction 

Ryan-Rhys Griffiths GAUCHE: A Library for Gaussian Processes and Bayesian 
Optimisation in Chemistry 

Niccolo Veanzi Predicting protein properties using molecular dynamics and 
machine learning 

Abbey/Michael Fluidic Neural Networks for Silver Nanoparticle Synthesis in 
Helical Microreactors 
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